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Abstract

In this paper, we analyze the performance of five estimation methods for the long memory

parameter d. The goal of our paper is to construct a wavelet estimate for the fractional

differencing parameter in nonstationary long memory processes which dominate the well

known estimate of Shimotsu and Phillips (2005). The simulation results show that the

wavelet estimation method of Lee (2005) with several tapering techniques performs better

under most cases in nonstationary long memory. The comparison is based on the empirical

root mean squared error of each estimate.

1 Introduction

In recent years, studies about long memory have received the attention of statisticians and

mathematicians. This phenomenon has grown rapidly and can be found in many fields such

as hydrology, chimistry, physics, economic and finance. For instance, the studies of Tokutsu

et al. (2008) for the realized volatility of stock returns in Tokyo stock exchange and Hsu

(2006) for modeling the Nile River time series, Boutahar et al. (2007) for US inflation

1



rate, Boutahar and Khalfaoui (2011) for studying the crude oil price volatility, Tsay (2009)

for political time series and Guegan et al. (2012) for GDP time series. Studies based on

simulation experiments in long memory domain are large, some of them we cite are studies of

Tokutsu et al. (2008), Hsu (2006), Moulines et al. (2008), Boutahar and Khalfaoui (2011),

Guegan et al. (2012) and McCloskey (2012).

The concept of long memory describes the property that many time series models possess,

despite being stationary which is higher persistence than short memory models, such as

ARMA models.

The properties of the long memory models depend on the fractional differencing parameter

value, denoted by d. Several estimation techniques have been proposed in the literature for

detecting the long memory phenomenon, in both time and frequency domains (see Beran

(1994))). Wavelets have been used to estimate the fractional differencing parameter (see

Jensen (1999) and Veitch and Abry (1999)), i.e. a log-linear relationship exists between

the wavelet variance of a given long memory model and its scale equal to the long memory

parameter. In this paper, we apply some estimation methods for detecting long memory in

nonstationary models: Three semi-parametric wavelet-based estimates are used, that are,

the wavelet ordinary least square estimate (WOLS1) of Jensen (1999), the wavelet ordinary

least square estimate of Veitch and Abry (1999) (WOLS2) and the wavelet GPH estimate

of Lee (2005) (WGPH). The Exact Local Whittle estimate (ELW) of Shimotsu and Phillips

(2005) and the GPH estimate of Geweke and Porter-Hudak (1983) are also used.

Note that consistency and/or asymptotic normality of these five estimates are

proved but for different intervals for d. They are proved for WOLS1 of Jensen

(1999), the WOLS2 of Veitch and Abry (1999) and the GPH Geweke and Porter-

Hudak (1983) estimates if |d| < 1/2. Lee (2005) proved the asymptotic normality

of the WGPH estimate if d ∈ (0, 3/2). Shimotsu and Phillips (2005) proved

asymptotic normality of the ELW estimate if d ∈ (∆1,∆2), with ∆2 − ∆1 ≤ 9/2.

Velasco (1999) obtained that the GPH estimate is asymptotically normal for

d ∈ (1/2, 3/4) and still consistent for d ∈ (1/2, 1). He showed that with adequate
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data tapers, the GPH estimator is consistent and asymptotically normal dis-

tributed for any d, including both nonstationary and non-invertible models, see

section 3 and 4 for more detail.

There are many other interesting estimators, but we will not consider in our sim-

ulation design for simplification purpose, which handle the nonstationary long

memory models. We cite, among others, the local Whittle Wavelet estimate

suggested by Moulines et al. (2008). They proved that their estimator is con-

sistent and rate optimal if the model is a linear, and is asymptotically normal if

the model is Gaussian. Abadir et al. (2007) proposed the fully extended local

Whittle estimator and showed its consistency and derived its asymptotic expan-

sion, they argued that their estimator is applicable not only for the traditional

cases but also for nonlinear and non-Gaussian models.

The remainder of the paper is structured as follows. The long memory definition is in-

troduced in section 2. Wavelet analysis is presented in section 3. In section 4, we briefly

describe the Geweke and Porter-Hudak (1983)’s and Shimotsu and Phillips (2005)’s long

memory estimates. The tapering is briefly introduced in section 5. In section 6, we compare

the performance of all proposed methods. An empirical application is proposed in section 7.

Section 8 concludes the paper.

2 Long memory

Let X(t), t = 1, 2, . . . , T be an ARFIMA(p,d,q) process defined by

(1− L)dΦ(L)X(t) = Θ(L)u(t) (1.1)

where u(t) ∼ i.i.d.N (0, σ2
u), L denotes the lag operator, and Φ(L) and Θ(L) are polynomials

in the lag operator L, that is

Φ(L) = 1− φ1L− φ2L
2 − . . .− φpLp,Θ(L) = 1 + θ1L+ θ2L

2 + . . .+ θqL
q. (1.2)
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(1−L)d is the fractional differencing operator for non-integer values of d. Following Granger

and Joyeux (1980) and Hosking (1981), (1− L)d can be defined by

(1− L)d =
+∞∑
i=0

d
i

 (−L)i = 1− dL− 1

2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − . . . (1.3)

This expression can be re-expressed as

(1− L)d =
+∞∑
i=0

Γ(i− d)Li

Γ(−d)Γ(i+ 1)
(1.4)

X(t) is said to be long memory if its autocorrelation function decays to zero like a power

function, that is

ρ(h) ∼ Ch2d−1 as h→∞, C 6= 0. (1.5)

For −0.5 < d < 0.5, X(t) is stationary and invertible and for d ≥ 0.5, X(t) is nonstation-

ary process. In this paper, we will concentrate on the fractional integrated nonstationary

processes.1

3 Wavelets

In this section we provide a brief description of wavelets. The reader should consult Mallat

(1989), Daubechies (1992) and Meyer (1993) for further details. Wavelets are small waves

that grow and decay in a limited time period. These wavelets represent a set of functions

{ψj,k(t)}j,k∈Z that act as an orthonormal basis for a given time series X(t) in L2(R). The

basis functions are shifted and scaled versions of the time-localized mother wavelet, ψ(t),

defined by

ψj,k(t) = 2j/2ψ(2jt− k). (1.6)

where k refers to translation (shifted) parameter and j refers to dilation (scaled) parameter.

The wavelet series smooth to a time series X(t) is defined by

X(t) =
∑
k

sJ,kφJ,k(t) +
∑
k

dJ,kψJ,k(t) + . . .+
∑
k

d1,kψ1,k(t). (1.7)

1see Beran (1994) for more details on long memory processes.
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where J is the number of scales and k ranges from one to the number of coefficients in the

specified components. The coefficient sJ,k, dJ,k, . . . , d1,k are the wavelet coefficients given by

sJ,k =

∫
φJ,k(t)X(t)dt. (1.8)

dj,k =

∫
ψj,kX(t)dt. (1.9)

where φ(t) is the father wavelets defined by

φj,k(t) = 2j/2φ(2jt− k), j, k ∈ Z. (1.10)

Let a discrete fractional time series X(t), t = 1, 2, . . . , T with memory parameter d ∈ (0, 1.5).

Wavelet coefficients of the wavelet transform for X(t) can be used for estimating d.

3.1 Jensen (1999)’s estimate

The Wavelet Ordinary Least Square (WOLS) estimate of the fractional differencing parame-

ter was introduced by Jensen (1999). Jensen proved that the wavelet coefficients, dj,k, associ-

ated with a mean zero ARFIMA(0,d,0) model with |d| < 0.5 are distributed N
(
0, σ22−2jd

)
,

where σ2 is a finite constant.2 The wavelet coefficient’s variance at a scale j is defined by

Var(dj,k) = R(j) = σ22−2jd. (1.11)

By taking the algorithms on both sides of equation 1.11, we have

ln {R(j)} = ln
{
σ2
}
− dln

{
22j
}
. (1.12)

The estimate of the fractional differencing parameter d can be obtained by applying the

ordinary least squares method to the equation 1.12. Following Jensen (1999), the wavelet

ordinary least squares estimate of d is given by

d̂WOLS1 =

∑J−1
j=0 yjln

{
R̄(j)

}∑J−1
j=0 y

2
j

. (1.13)

where yj = ln {2−2j} − 1
J

∑J−1
j=0 ln(2−2j) and R̄(j) = 1

2j

∑2j−1
k=0 d

2
j,k.

Jensen shows that the d̂WOLS1 is a consistent estimate of the fractional integration parameter

d.
2See Jensen (1999) for more details about the estimation method.
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3.2 Veitch and Abry (1999)’s estimate

Based on the DWT coefficients dj,k defined in equation 1.9 of X(t), t = 1, 2, . . . , T , where

X(t) is an ARFIMA(0,d,0). Following Veitch and Abry (1999) we have

µ̂j =
1

υj

υj∑
k=1

d2j,k. (1.14)

where υj is the number of the wavelet coefficients at octave j available to be computed. As

shown by Veitch and Abry (1999)

µ̂j ∼
zj
υj
χ2
υj
. (1.15)

where zj = c22dj, c > 0, and χ2
υj

is Chi-squared random variable with υj degrees of freedom.

By taking the logarithms on both sides of equation 1.15, we have

log(µ̂j) ∼ 2dj + log2(c) +
log(χ2

υj
)

log2
− log2(υj). (1.16)

The expected value and the variance of the variable log(χ2
υ) are given by

E
{

log(χ2
υ)
}

= ξ(
υ

2
) + log2,

Var
{

log(χ2
υ)
}

= ζ(2,
υ

2
), (1.17)

where ξ(h) = ∂h/∂hlog {Γ(h)}, and ζ(2, υ
2
) is the Riemann zeta function, defined by

ζ(y) =
1

Γ(y)

∫ +∞

0

uy−1

eu − 1
=

1

1− 21−r

+∞∑
υ=1

(−1)υ−1

υr
. (1.18)

The equation 1.16 can be written as

ϑj = α + βwj + εj. (1.19)

where ϑj = log2(µ̂j)− gj, α = log2(c), β = 2d, wj = log2(2
j) ' j and εj = log2

{
log(χ2

υj
)
}
−

log2(υj)− gj, gj = ξ(υj/2)− log(υj/2). εj satisfies

E(εj) ' 0,Var(εj) =
ζ(2,

υj
2

)

[log2]2
'
{

2υjlog22
}−1

. (1.20)

The wavelet ordinary least square estimate of Veitch and Abry (1999) is given by

d̂WOLS2 =
β̂

2
(1.21)

where β̂ is the ordinary least square estimate obtained from equation 1.19. Veitch and Abry

(1999) shows that under some regularity conditions, d̂WOLS2 is efficient and consistent.
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3.3 Wavelet GPH estimate

The wavelet GPH estimate is defined by Lee (2005). Based on the discrete wavelet transform

of X(t), given by

dj,k =
∑
k

X(t)ψj,k(t). (1.22)

The spectral density of the wavelet transform at the scale j around zero frequency for d ∈

(0, 1.5) is as follows

fj(λ) = Cj |λ|−2d |Λ(λ)|2 as λ→ 0 = Cj |λ|−2(d−1) g2(λ) as λ→ 0. (1.23)

where Cj = cj/2π < ∞ is a constant term, and |Λ| = λνg(λ) for all integer ν, with

g(tλ)/g(λ) = 1 for all t as λ→ 0 and 0 < g(0) <∞.

For a fixed scale j, the periodogram of fj(λ) is

Il(j) =
1

2πT

2j−1∑
k=0

|dj,kexp(iλlk)|2 , l = 1, 2, . . . ,m. (1.24)

where λl = 2πl/T , m is the number of frequencies which restricted such that m → ∞ and

m/T → 0 as T →∞.

The wavelet-based GPH estimate denoted as dWGPH, it is obtained by a log transformation

of equation 1.23, more precisely, is obtained by regressing log periodogram, ln {Il(j)}, on

−2ln(λl) for l = 1, 2, . . . ,m, then by adding one to the estimate.

For d ∈ (0, 1.5), Lee (2005) shows that d̂WGPH is consistent and asymptotically normal if

m = o(T 4/5), that is

√
m
(
d̂WGPH − d

)
→ N

(
0,
π2

24

)
, as T →∞ (1.25)

where m = T 4/5 is the optimal rate for the number of frequency in terms of the mean squared

error (see Hurvich et al. (1998) and Andrews and Guggenberger (2003)).
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4 Other estimates

4.1 Exact Local Whittle estimate

Let X(t), t = 1, . . . , T be a time series generated by the following fractional model

(1− L)dX(t) = ε(t)Υ {t ≥ 1} . (1.26)

where Υ {.} is the indicator function and ε(t) is a stationary process with mean zero and

spectral density fε(λ) ∼ G as λ → 0. The discrete Fourier transform and the periodogram

of X(t) are given by

zX(λn) =
1√
2πT

T∑
t=1

X(t)exp(itλn), λn =
2πn

T
, t = 0, 1, . . . , T. (1.27)

IX(λn) = |zX(λn)|2 . (1.28)

Shimotsu and Phillips (2005) proposed to estimate (d,G) by minimizing the objective func-

tion

Qm = (d,G) =
1

m

m∑
n=1

[
log(Gλ−2dn ) +

1

G
Iε(λn)

]
. (1.29)

So that, we have (
d̂, Ĝ

)
= arg min

G∈(0,∞),d∈[41,42]

Qm (d,G) . (1.30)

where −∞ < 41 < 42 < +∞ are the lower and upper bounds of the admissible values of d.

m is the bandwidth parameter which determines the number of periodogram ordinates used

in the estimation.

Concentrating Qm (d,G) with respect to G, Shimotsu and Phillips (2005) defined the Exact

Local Whittle estimate as

d̂ELW = arg min
d∈[41,42]

R0(d). (1.31)

where R0(d) = log
{
Ĝ(d)

}
− 2d 1

m

∑m
n=1 logλn and Ĝ(d) = 1

m

∑m
n=1 Iε(λn).
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Shimotsu and Phillips (2005) found that the Exact Local Whittle is consistent3 for d ∈

(41,42), and asymptotically normal

√
m
(
d̂ELW − d

)
→ N

(
0,

1

4

)
, as T →∞. (1.32)

provided that 42 −41 ≤ 9/2.

4.2 Geweke and Porter-Hudak (1983)’s estimate

The GPH method also known as the log-periodogram method is proposed by Geweke and

Porter-Hudak (1983). Following Geweke and Porter-Hudak (1983) and based on a fractional

time series X(t) with length T the estimated slope coefficient of

ln {IX(λn)} = c+ dln

[{
2sin(

λn
2

)

}−2]
+ εn (1.33)

is used as the estimate of the fractional differencing parameter d, denoted by d̂GPH. Here

IX(λn) is the periodogram which is normalized by 2π at the n-th Fourier frequency λn, where

λn = 2πn/T and ε ∼ i.i.d.N (0, σ2
ε ).

4

5 Tapering

The idea of tapering is proposed by Cooley and Tukey (1965) in order to reduce the bias

of the periodogram due to frequency domain leakage, where part of the spectrum ”leaks”

into adjacent frequencies. By using tapers, we reduce the leakage due to the discontinuity

caused by the finiteness of the sample, therefore, tapers smooth this discontinuity. Following

Cooley and Tukey (1965), it consists of multiplying the data by a sequence of non-negative

weights, called ”taper” or ”fader” or ”data window”.

Definition 5.1. A sequence of taper {h(t)}Tt=1 is of order p if the following two conditions

are satisfied

3See Shimotsu and Phillips (2005) for more details about the consistency of the estimate.
4See Geweke and Porter-Hudak (1983) for more details.
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1.
∑T

t=1 h(t)2 = Tb(T ), 0 < b(T ) <∞.

2. For N = bT/pc, the Dirichlet Kernel D(λ) satisfies

D(λ) ≡
T∑
t=1

h(t)exp {iλt} =
a(λ)

T p−1

(
sin bTλ/2pc

sin bλ/2c

)
where a(λ) is a complex function and b.c is the integer part.

There exist many data tapers, in this paper we are interested in Bartlett, Hanning and

Parzen windows.

Bartlett window, also known as Triangular window. The Bartlett window is defined as

h(t) = 1−
∣∣∣∣2t− TT

∣∣∣∣ , t = 1, 2, . . . , T (1.34)

where T is the length of the window and h(t) is the window value.

Hanning window : is also known as the Cosine Bell window. Usually, it is called Hanning

window

h(t) =
1

2

[
1− cos

(
2πT

N

)]
, T = 1, 2, . . . , N (1.35)

where N is the length of the window.

Parzen window : The Parzen window is a piecewise cubic curve window obtained by the

convolution of two triangles of half length. it is defined as follows:

h(t) =

 2
{

1−
∣∣2t−T

T

∣∣}3 , 1 ≤ t ≤ N or 3N ≤ t ≤ 4N,

1− 6
[{

2t−T
T

}2 − ∣∣2t−T
T

∣∣3] , N < T < 3N.
(1.36)

with N = bT/4c.

The tapered periodogram of a variable X(t), t = 1, 2, . . . , T for any taper sequence h(t), t =

1, 2, . . . , T is defined as

I(λn) = |z(λn)|2 . (1.37)

where λn = 2πn/T, ∀ n = 1, 2, . . . , b(T − 1)/2c, b.c is the integer part and the tapered

discrete Fourier transform is given by

z(λn) =

(
2π

T∑
t=1

h(t)2

)−1/2 T∑
t=1

h(t)X(t)exp(iλnt). (1.38)
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For more details about different types of tapers see Brillinger (1981), Alekseev (1996) and

Velasco (1999). Figure 1 shows the Bartlett and Hanning windows.

If we denote by d̂TGPH the GPH estimator of Geweke and Porter-Hudak (1983)

but obtained for tapered data, then Velasco (1999) established that

√
m
(
d̂TGPH − d

)
→ N

(
0,
π2

24

)
, as T →∞ (1.25)

provided that the model is Gaussian and

[d+ 1/2] ≤ p (1.26)

where p is the order of the taper and for any d, ([x] is the integer part of x).

6 Simulation study

In this section, we consider sample sizes of T = 128, 256, 512, 1024, 2048 and a number of

replications of 10000. The data generation processes are ARFIMA(0,d,0) and ARFIMA(1,d,0)

with d = 0.4, 0.5, 0.6, 0.8, 0.9, 1.0, 1.1, 1.2; the AR coefficient is equal to φ = 0.4 and

φ = 0.8. 5 For wavelet estimates, we consider a Least Asymmetric wavelet filter with length

L = 12, i.e., LA(12).6 We also consider three tapers in order to show the effect of taper in

the robustness of wavelet estimates, that is, Bartlett, Hanning and Parzen. Note that the

order of Bartlett, Hanning and Parzen tapers are 2, 3 and 4 respectively. Note

also that all the data generating procesess are such that [d + 1/2] ≤ 2, therefore

the condition (1.26) is satisfied and hence the tapers will achieve consistency.

However data generating processes with d ≥ 1.2 can also be simulated and we

can define tapers of any given order p. For example the Kolmogorov taper of

5In this study we are not interested in the estimation of the short-memory parameters p and q in the

ARFIMA(p,d,q), for some discussing results see Boutahar and Khalfaoui (2011).
6We have also tried other wavelet filters, but have never any effect in the robustness of estimates (they

are available upon request). For some examples see also Boubaker and Boutahar (2011).
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order p is obtained from the pth convolution of the uniform density.

For the Exact Local Whittle estimate we used bandwidths m = T 0.7 and m = T 0.8. The

bandwidth used for the GPH estimate is m = T 0.8.

To compare the performance of the given estimates defined in sections 3 and 4, we com-

pute the Root Mean-Squared Error value, denoted hereafter by RMSE, i.e., RMSE =√
T−1

∑T
i=1(d̂i − d)2.

6.1 Comments on the purely long memory processes

Table 1 provides simulation results of the GPH and wavelet GPH estimates. Table 2 pro-

vides simulation results of wavelet OLS estimates. Table 3 provides simulation results of the

Exact Local Whittle estimate.

From Tables 1-3 we can observe that the bias (d − d) and the RMSE globally

decrease as the sample size T increases, consequently all the estimators are con-

sistent; however they have different behavior in finite sample size. Below we

describe some differences.

From the simulation results shown in Tables 1 and 2, we remarked that Bartlett taper pro-

vides smaller variance values than those produced by Hanning and Parzen tapers.

From Table 3, we can observe that an estimate of the fractional differencing parameter d with

a bandwidth m = T 0.8 provides smaller variance values than an estimate with bandwidth

m = T 0.7.

Figures 2, 3 and 4 plot the RMSE as a function of the long memory parameter d. As it

can be shown in Figure 2, wavelet estimates are superior to the Exact Local Whittle one,

excepted when d = 0.9 and T = 128. We observe that the Exact Local Whittle estimate is

better. We can observe also that with same values of d and T and by using the Bartlett taper

wavelet estimate is superior (wavelet GPH estimate). In addition, from Figure 2 and with a

sample size T = 256, we can observe that wavelet estimates are superior to the Exact Local

Whittle estimate, excepted when d = 0.8. For small sample sizes: T = 128 and T = 256, we

conclude that the wavelet method outperforms the Exact Local Whittle method.

12



From Figure 3, we also find that wavelet estimate outperforms the Exact Local Whittle

estimate, excepted when d = 0.6, T = 1024 and using the Bartlett and Parzen tapers for

wavelet estimates, the Exact Local Whittle estimate is superior. In order to find a better

wavelet estimate, we change the taper and we can observe that by applying the Hanning

taper and for the same values of d and T (d = 0.6 and T = 1024), the wavelet estimate is

superior, i.e., the wavelet GPH estimate is the best. Also from Figure 3, we observe that for

T = 512 and T = 0.9 the Exact Local Whittle estimate is superior to the wavelet estimates

with Hanning taper, but when using a good taper, such as Bartlett and Parzen ones we

find that wavelet estimate performs the Exact Local Whittle one (wavelet GPH estimate).

Hence, the simulation results reveals that for sample sizes T = 512 and T = 1024 the wavelet

methods outperform the Exact Local Whittle method.

As it can be shown in Figure 4, the wavelet estimates with different tapers improve with

smaller RMSE and they are very competitive to the Exact Local Whittle estimate.

Figure 5 (the left panels) plots the RMSE as a function of the time T , for an

ARFIMA(0,0.8,0). It seems that the RMSE is not monotone but converges to

zero. Note that the value of the RMSE for T=128 is always very small to the one

for T = 2048 for all the data generating processes and for all the five estimators.

For instance, in Table 1 and using the Bartlett taper we can see that the RMSE

of the wavelet GPH is equal to 0.00375 for T = 128 and 0.00018 for T = 2048, hence

the RMSE is reduced about 95.2% of its value. In Table 3 the RMSE of the

ELW is equal to 0.00294 for T = 128 and 0.00039 for T = 2048, hence the RMSE is

reduced about 86.7% of its value.

6.2 Comments on ARFIMA with short memory component

Tables 4-6 provide simulation results for the ARFIMA(1,d,0) models with φ =

0.4. Tables 7-9 provide simulation results for the ARFIMA(1,d,0) models with

φ = 0.8. Concerning the behavior of the estimators, a similar comments as on

purely long memory case can be made. The estimators remains still consistent
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but they converge toward the true parameter more slowly than the purely long

memory case. From Table 1,4 and 7, we can see that for T = 2048, the RMSE

of the wavelet GPH is equal to 0.00018 for the ARFIMA(0,0.8,0), is equal to

0.00162 for the ARFIMA(1,0.8,0) with φ = 0.4 and is equal to 0.00293 for the

ARFIMA(1,0.8,0) with φ = 0.8, therefore in presence of short memory component

the RMSE converges to zero but more slowly than the purely long memory

processes; the degree of correlation of the short component has also an impact

on the rate of convergence of the RMSE, the rate becomes more slowly as the

AR coefficient approaches to 1. This fact is also visible in figure 5 where scales

of left panels are lesser that the ones of the right panels. This in fact true for

all the five estimators, (compare tables 1,4,7, tables 2, 5, 8, and tables 3,6,9).

As a summary, our simulation results show that wavelet estimates dominate the well known

Shimotsu’s estimate for non-stationary long memory processes and the choice of the taper

is crucial for providing robust estimation method. We also conclude that the wavelet GPH

estimate dominates under most cases.

7 An illustrative example

In this section, the proposed methodology is applied to a real example for illustration. The

data consist of weekly crude oil spot prices (in US dollars per barrel) during the period

from September 10, 1993 to April 19, 2013. The data are from the U.S. Energy Information

Administration.7 Table 4 reports summary statistics for WTI and Brent crude oil prices.

There is a total of 1024 weekly observations. As shown in Table 10, differences between

standard deviations (Std.dev) of WTI and Brent is small, indicating that the contribution

of WTI volatility to Brent volatility is also small. Both skewness and kurtosis statistics in

the table show that the returns distribution is not distributed normally.

The estimation results of the long memory parameter by methods presented in the method-

7http://tonto.eia.doe.gov/dnav/pet/pet pri spt s1 w.htm
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ology are given in Table 11. All estimates indicate non-stationary long memory behavior of

crude oil prices (1.034 ≤ d̂ ≤ 1.216).

8 Conclusion

We have compared five methods for the estimation of the long memory parameter d in

nonstationary time series, two non-wavelet-based and three wavelet-based. These are the

Geweke-Porter Hudak (GPH), Exact Local Whittle, wavelet GPH and wavelet OLS. We

have introduced the tapering in the case of GPH and wavelet methods in order to show the

effect of the taper for providing robust estimation method (we have employed three types of

tapers: Bartlett, Hanning and Parzen ones). We have undertaken a Monte Carlo comparison.

In the Monte Carlo experiments, we have focused on ARFIMA(0,d,0) and ARFIMA(1,d,0).

In this study, we are not interested in the estimation of the short-memory parameters p and

q in the ARFIMA(p,d,q), for some discussing results see Boutahar and Khalfaoui (2011).

We conclude that wavelet GPH method of Lee (2005) is superior under most situation with

respect to RMSE criterion compared to others estimates. Thus, basing in several tapers

the developed wavelet estimate outperform the well known Exact Local Whittle one for

non-stationary long memory time series. Moreover, according to simulation results we have

observed that the tapering has an impact on the performance of the estimate. We conclude

also that, to get a wavelet estimate which is superior to the Exact Local Whittle one, we

must choose the optimal taper.
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